
A Simulation Framework for Evaluating Mobile Robots

Stephen Balakirsky and Elena Messina
National Institute of Standards and Technology

Intelligent Systems Division
Gaithersburg, MD 20899-8230

Email: stephen@cme.nist.gov, elena.messina@nist.gov ∗†

Abstract

As robotic technologies mature, we are moving from

simple systems that roam our laboratories to heteroge-

neous groups of systems that operate in complex non-

structured environments. The novel and extremely com-

plex nature of these autonomous systems generates a great

deal of subsystem interdependencies that makes team, in-

dividual system, and subsystem validation and perfor-

mance measurement difficult. Simple simulations or labo-

ratory experimentation are no longer sufficient. To assist

in evaluating these components and making design deci-

sions, we are developing an integrated real-virtual envi-

ronment. It is our hope that this will greatly facilitate the

design, development, and understanding of how to con-

figure and use multi-robot teams and will accelerate the

robots’ deployment.

Keywords:

simulation, architectures, 4D/RCS, mobile robots, algo-

rithm validation

1 Introduction

There have been many recent successes in the field
of mobile robotics. These range from single robot
systems such as MINERVA that has been designed
to give guided tours of museums [8], Predator and

∗No approval or endorsement of any commercial product by
the National Institute of Standards and Technology is intended
or implied. Certain commercial equipment, instruments, or ma-
terials are identified in this report in order to facilitate under-
standing. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Tech-
nology, nor does it imply that the materials or equipment iden-
tified are necessarily the best available for the purpose.

†This work was sponsored in large part by grants from
the Army Research Laboratories and the DARPA Mobile Au-
tonomous Robot Software Program.

Global Hawk that have been designed for military air
applications, and Demo III [7] [5] and Perceptor that
have been designed for military ground applications to
multi-robot systems such as the multiplicity of robot
teams involved in the Robocup soccer league [3].

As these systems become more complex and at-
tempt to perform more ambitious tasks, the knowl-
edge and resources (both hardware and software) that
are necessary to make contributions to the field dra-
matically increases. As a result, informal (or formal)
code sharing now takes place between many universi-
ties and research institutions. For example, the code
used in the Robocup competitions is published and
freely available to anyone who wishes to download and
use it, and the mobility and planning software used
by the Perceptor program is heavily based upon the
code from Demo III. While this code reuse allows re-
searchers to gain quick entry into the various mobile
robot arenas, it raises some interesting questions. If
multiple sources of algorithms that provide a solution
to a particular problem exist, which one is better?
Will the given algorithm work in the new proposed
environment? Are there any unintended consequences
on the rest of the system (or systems) of integrating
in this new component?

Code and component sharing also allows re-
searchers to perform research in a specific area of
robotics without becoming an expert in every aspect
of robotics. For example, it should be possible on to-
day’s computer hardware to develop a planning system
capable of creating plans to navigate through complex
city traffic. However, in order to do this, an image pro-
cessing system must exist that can detect and predict
the location of traffic, road lanes, and traffic signs.
It is feasible that a planning researcher can reuse a
base technology such as the image processing subsys-
tem rather then creating one from scratch. However,
is there a solution to this problem when no such base
technology or algorithm is available? Will the new



Figure 1: Model for RCS Control Node.

planning approach have to wait to be proven because
of dependencies on as yet undeveloped algorithms or
hardware?

This paper will suggest a means to address all of
the above questions by describing the development
of an integrated real-virtual simulation environment.
The objective of this environment is to provide a stan-
dard architecture and set of interfaces through which
real and virtual systems may be seamlessly coupled
together. It will be shown that through this cou-
pling, components ranging from individual algorithms
to groups of vehicles may be developed, debugged, and
evaluated.

2 An Architecture for Intelligent Au-
tonomous Vehicles

One of the key decisions to be made in building
any kind of complex system is how to organize the
hardware and software. The Demo III Program and
some of the teams competing for the Future Combat
Systems contract have selected the 4D/RCS reference
architecture for their autonomous vehicles [1]. Rather
than starting from scratch, the simulation framework
will be built upon the existing 4D/RCS architecture
and will take advantage of existing interfaces and com-
ponents.

The 4D/RCS architecture consists of a hierarchy of
computational nodes, each of which contains the same
elements. Based on control theory principles, 4D/RCS
partitions the problem of control into four basic ele-
ments that together comprise a computational node:
behavior generation (BG), sensory processing (SP),
world modeling (WM), and value judgment (VJ). Fig-
ure 1 shows the 4D/RCS control node and the con-
nections between its constituent components. Figure

2 shows a sample 4D/RCS hierarchy for military scout
vehicles.

3 Requirements for a Simulation,
Modeling, and Development Frame-
work

An architecture is a first step towards guiding and
facilitating the construction and evaluation of complex
single or multi-vehicle autonomous systems. Tools
that help automate the software development and
component integration are another important element.
NIST has been working with industry, other govern-
ment agencies, and academia to investigate tools to
facilitate construction of the types of large and com-
plex systems that will be represented in this simula-
tion framework. We are developing a large-scale sim-
ulation environment that will enable us, along with
others, to design the control hierarchy, populate the
control nodes, run the system in simulation, debug it,
and generate code for the target host. The develop-
ment and simulation environments are closely tied to
the eventual deployment platforms and are intended
to be able to operate with a combination of real and
simulated entities. The ability to enable human-in-
the-loop testing and execution is also crucial, given
the novel aspects of human-robot interactions.

A high-level list of the requirements for such a de-
velopment and simulation environment has been de-
veloped to help guide its creation. The requirements
are as follows:

• Full support of 4D/RCS architecture
• Graphical user interface for developing, integrat-

ing, testing, debugging the system under devel-
opment



Figure 2: 4D/RCS Reference Model Architecture for an individual vehicle.

• Reuse support:

− Architecture elements
− Component templates
− Algorithms
− Code
− Subsystems

• Intuitive visualizations of the control system to
support design and development by providing an
understanding of what the system is doing and
why, and what it plans to do next. Examples of
visualizations include:

− Display of control hierarchy as it executes,
including commands flowing down and sta-
tus flowing up

− Ability to “zoom in” on a particular node
and view states as the system executes

− Ability to view world models within the sys-
tem

• Execution controls, including

− Single step through execution
− Breakpoints and watch windows
− Logging

• Simulation infrastructure supporting realistic ex-
ecution scenarios, visualization, and debug-
ging/evaluation experiments. This includes

− Population of the environment external to
the system with relevant features (such as
roads, other pieces of equipment, humans,
etc.)

− Controlled dynamic environment (with pre-
scribed repeatable events)

• Modification capabilities so that the designer and
user can perform “what if” experiments. The
tools should allow interactive and intuitive modi-
fication of situations in the environment or within
the system. The modification capabilities should
work seamlessly with the visualization, simula-
tion, and execution features. Examples of types
of modifications that should be allowed include:

− Changing world model data
− Importing datasets that represent what the

system’s sensors would receive
− Changing environmental conditions

• Support for real-time computing. All levels of the
4D/RCS control hierarchy must execute within



certain time constraints (e.g., the servo level may
have to respond at 60 Hz; whereas higher levels
may have several seconds or even minutes per cy-
cle).

4 Proposed System of Systems

We are seeking to create an integrated environ-
ment that provides capabilities typically associated
with software development tools and those associated
with simulation environments. All of the pieces nec-
essary for the construction of this environment may
exist to some degree as separate commercially avail-
able packages. However, whereas several commercial
tools exist to help design and construct software, these
tool-sets are typically disconnected from the overall
system architecture and execution environments (real
or simulated). Likewise, many sophisticated simula-
tion systems exist. However, these systems tend to
work at either a very broad scope at low resolution, or
a very limited scope at high resolution. What we are
building is a coherent environment for designing, de-
veloping, and validating software components ranging
in size from a single module to a team of systems.

As shown in Figure 3 one will be able to take soft-
ware modules from a repository and interface them
directly into either a real or virtual system. This abil-
ity will be supported through the decomposition of
systems and algorithms into the 4D/RCS architecture
and the use of standard interfaces between modules.

This decomposition will be supported through the
software design and development support tools that
provide the ability to work in a graphical environment
to sketch the control hierarchy, bring up partially in-
stantiated 4D/RCS control nodes, easily create con-
nections between nodes (or components within them),
and automatically generate executable code. The soft-
ware support tools will also encompass capabilities
typically found under run-time debug tools, includ-
ing single stepping and setting break points. Further-
more, sophisticated displays of variables and execution
states are being created. For instance, a ”strip chart”
view one or more variables can be displayed on screen
and techniques for helping developers visualize com-
plex world models are being designed. This includes
display of the graphs that several path planning algo-
rithms utilize to search for the best (least cost) path.
The graphs typically have thousands of nodes, which
are connected in a neighborhood to other nodes by
edges that have a cost associated with them. The
costs vary, depending on operation mode, or as envi-
ronmental conditions change and are computed based

on the various layers in the world model (such as roads,
obstacles, and elevation). Therefore, the visualization
of relevant and salient aspects of the world model in
order to validate the model itself and the planning is
a challenging undertaking.

The software development tools will segue smoothly
into the simulation environment. Under this concept,
a virtual world is being created that brings together
existing multi-platform and single platform simulation
systems into a system of systems. Through the use of
well-defined interfaces that are supported on a wide
variety of computer platforms, the simulator’s internal
command and data flows will be able to be interrupted
and modified. This will allow researchers to “plug-in”
individual technology components that meet the in-
terface requirements and override the default methods
that the simulators normally employ. As shown in Fig-
ure 3, interfaces will be provided that range through
the entire spectrum of the 4D/RCS hierarchy; from
a low-fidelity multi-platform configuration to a high-
fidelity single platform configuration, to the ability to
add real platforms into the virtual world.

Global variable resolution database resources will
also be available. These include a terrain database
that contains elevation data, a feature database that
contains annotated vector data for roads, signs, build-
ings, rivers, etc., and an annotated entity database
that contains information on all of the platforms par-
ticipating in the simulation. The annotations include
items such as lane markings and names for roads, text
contained on a sign, and health status of other en-
tities. Filters will be available to tune the database
outputs to the specific needs of each algorithm. For
example, specific sensor processing capabilities may be
simulated by querying these databases with a specified
sensor range and resolution.

In addition to serving a priori data, these databases
will be able to be modified in real-time. Any modi-
fications made to the databases will be viewable by
all participants (both real and virtual) in the exercise.
These modifications may be related to sensed infor-
mation from a real vehicle that is participating in the
simulation or may be injected by the user to alter the
environment that the simulation framework in oper-
ating in.

The final component of the system is a set of data
capture, analysis, and evaluation tools. The data cap-
ture tool will allow for any or all of the messages being
transmitted over the standard message channels to be
time-tagged and logged into a trace file. In addition,
raw simulation results may be logged, for example the
location and activities of each participating entity.



Battalion

º
º
º

Vehicle

º
º
º

Servo

Low 
Fidelity 

Simulation

High 
Fidelity 

Simulation

Standard 
Interfaces

Repository of Modules, Designs, Algorithms

BG
BG

Path Map

PID

Stereo
X

BG

LADAR
A

OA

Comm

Data Capture, Analysis and Evaluation Tools

Event Log Control Analysis

Ground
Truth

Data Log

Figure 3: Hierarchy of simulators.

Data analysis tools are also being developed that
will allow for a variety of data presentation and anal-
ysis options. This will include both the tracking of
timings as well as the values of specific variables or
combinations of variables. For example, the distance
between two entities may be constantly tracked. These
data analysis tools will also be tied into ground truth
from the simulation systems. This will allow algo-
rithm and system evaluation against known data and
the determination of such items as the time from a
sensor event to a system reaction or the accuracy of a
real systems road following algorithms. Through the
use of these standard interfaces and tools, researchers
will be provided with a low cost technique for eval-
uating performance changes due to their system’s or
algorithm’s integration into the overall framework.

5 Current Implementation

While the entire software development and simula-
tion system has not yet been implemented, progress
has been made on developing prototypes and designs
for the overall system. No single simulation tool has
been found that meets all of the criteria discussed in

the requirements section. Therefore, a hierarchy of
simulators has been explored.

At the top of the hierarchy, a low-fidelity, long tem-
poral and spatial duration, multi-platform simulator
is required. As designed, this class of simulator is ca-
pable of simulating the interaction, coordination, and
movement of large groups of platforms. While these
simulators do simulate down to the level of the indi-
vidual platforms moving across the terrain, the ter-
rain and mobility models are typically low resolution.
Therefore, this class of simulator is best utilized in
developing algorithms for group behaviors where pre-
cise platform mobility and sensing modeling is beyond
the scope of the experiment. A second class of simu-
lator has been identified for situations where precise
modeling is required. These simulators will need to
share interfaces with the low-fidelity simulator, and in
fact may take commands from the low-fidelity simu-
lators in order to precisely model one or more of the
platforms involved in a particular exercise. The high-
fidelity simulators will also be able to read the shared
databases and construct simulated sensor output (or
pass real sensor output) that may be used by external
sensor processing algorithms. Complex, dynamically
correct platform motion models and high resolution



terrain information will also available at this level.
Interfaces will be inserted into each simulator that

will enable the export and import of both world model
and behavior generation information at each level of
the 4D/RCS hierarchy. This will enable researchers to
implement a particular group behavior or algorithm at
a particular level of 4D/RCS. For example, a cooper-
ative search algorithm could be implemented at the
“section” level of 4D/RCS. The algorithm would re-
ceive its command input from the platoon level of the
low-fidelity simulator and construct a plan based on
information read from the terrain, entity, and feature
databases. The planned course of action (individual
plans for several platforms) would then be passed back
into the simulator for execution. In this particular
case, the plans could be passed either back to the low-
fidelity simulator or to the high-fidelity simulator. In
addition, one or more of the platform’s plans could be
passed to real systems. As designed, the source and
destination of these plans and the data utilized to con-
struct them is transparent to the planning system and
totally controlled by the user. This will facilitate an
environment where a researcher can simulate as many
or as few subsystems and levels as desired.

Both a low-fidelity and high-fidelity commercially
available simulation package have been selected and
implemented into the prototype framework.

5.1 Low-fidelity Simulator

For the prototype system, we have chosen the
US Army STRICOM’s OneSAF Testbed Baseline
(OTB)1 for both the low-fidelity simulation and
shared database server. We have worked closely with
the Army Research Laboratory and Science and Engi-
neering Services Inc. to install the standard interfaces.
All of the interfaces communicate over NIST’s NML
communication channels [6] which provide a multi-
platform solution to inter-process communication.

Distributed, shared databases are implemented as
part of the standard implementation of OTB. We
have added interfaces into the simulation system that
allow for simple outside access of this information.
These interfaces include hooks into the terrain eleva-
tion database, feature database, and entity database.
Additional channels that tie the basic information con-
tained in these databases to a full relational database
for the storage of attribute information is currently
being investigated.

For the terrain elevation database, both all-knowing
(what is the elevation in this area, to this resolution)

1http://www.onesaf.org/publicotb1.html

and modeled (what is the terrain map as modeled by
vehicle x with its sensors) are available. Feature vector
data is available on an all-knowing basis that may be
filtered by distance from the vehicle so as to simulate
what sensors perceive. In addition to the standard fea-
tures that are modeled by the simulation system, sim-
ulated traffic signals and signs are being implemented.
For entity data, filtered information (all friendly, en-
emy, detected, etc.) reports are available as well as
event detections. Events currently supported include
line crossings and anticipated line crossings with more
to be added shortly.

In addition to the database access interfaces, we are
able to interrupt the standard OTB command flow to
inject our own plans. This has been demonstrated by
having OTB section level plans sent out over an NML
channel to a stand-alone vehicle level planner. The
results of the vehicle level planner can then be exe-
cuted on real robotic hardware, sent to a high-fidelity
simulator, or sent back into the OTB simulator for
execution.

Input from real robot platforms into the simulation
environment is also supported. This interface allows a
real robotic platform to influence OTB databases by
continuously updating their own location as well as
adding detected features and entities.

Work is continuing on developing further interfaces.
These will provide further breaks in the OTB com-
mand flows that will allow for planning systems that
compute group plans to be implemented and evalu-
ated.

Another feature that is standard with the OTB dis-
tribution is a data logger. This logging facility logs all
entity movements and events that occur in the simula-
tion. Logging facilities to log message channel traffic
are currently under development.

5.2 High-fidelity Simulator

For the high-fidelity simulation, SimRobot from the
University of Bremen2 has been selected for the pro-
totype system. NML channels for low-level command
input, and position output have been implemented.
Currently, this simulator is only capable of simulations
on a flat earth. Therefore, work is being performed to
improve the simulators ability to operate in complex
3-dimensional terrain. Once this work is completed,
the low-fidelity simulator will operate from the same
terrain database as the low-fidelity simulator.

2http://www.informatik.uni-bremen.de/˜roefer/simrobot/
index e.htm



Figure 4: Example of features in controller software development tool.

5.3 Software Development Support

We have been experimenting with various represen-
tation techniques and development tools. These range
from commercial packages, such as Real-Time Innova-
tion Incorporated’s ControlShell to novel formal lan-
guages, such as Stanford’s Rapide [4]. Recent work has
focused on the use of the Unified Modeling Language
to support 4D/RCS control system development [2].

A commercial development and execution tool for
building simpler versions of RCS-style controllers has
been developed by a small company (Advanced Tech-
nology and Research), but it is targeted at manu-
facturing systems that have minimal sensing require-
ments. This tool is being modified to support the
types of visualizations, modifications, and execution
controls desired for on-road and off-road vehicles. Fig-
ure 4 is a screen shot taken of the tool while running
and illustrates some of its features. The top left win-
dow shows an animation of the vehicle being controlled
as it moves through its environment, which can in-
clude other vehicles. The top right window shows 2
variables that have been selected by the user to be
graphed (current speed and y position). All other
variables in the world model are accessible through

the lower right window, where logging, charting, min-
imum, maximum, and other values are displayable.
The lower left window displays the state table for one
of the controller nodes (in this case, the Prim) for the
vehicle, with the current state highlighted.

6 Summary

This paper has presented an integrated simulation
framework that is capable of aiding researchers in de-
veloping, debugging, and evaluating algorithms, sub-
systems, systems, and groups of systems. While the
entire framework has not yet been implemented, a
prototype system does exist. This system allows the
seamless operation of both real and simulated systems
in an environment that contains both real and virtual
features. In addition, standard interfaces, data logging
facilities and ground truth exist to aid in the evalua-
tion of the performance of systems and the comparison
of multiple systems under repeatable conditions.

While interfaces exist for the “section” and “vehi-
cle” level of the 4D/RCS architecture, it is desired to
have interfaces that allow the testing and evaluation
of components that reside at any architecual level. It



is also desirable to be able to simulate additional en-
vironmental models for both the high and low fidelity
simulators. These include traffic signals and signs for
the low-fidelity simulator and a more realistic mobility
platform simulator for the high-fidelity simulator.

Therefore, future work on this framework includes
the development of additional interfaces, further de-
velopment of the simulation environment, and the in-
corporation of the design and debug toolsets.

References

[1] J. Albus. 4-D/RCS reference model architecture
for unmanned ground vehicles. In G Gerhart,
R Gunderson, and C Shoemaker, editors, Proceed-
ings of the SPIE AeroSense Session on Unmanned
Ground Vehicle Technology, volume 3693, pages
11–20, Orlando, FL, April 1999.

[2] H. Huang, E. Messina, H. Scott, J. Albus, F. Proc-
tor, and W. Shackleford. Open system architecture
for real-time control using an uml-based approach.
In Proceedings of the 1st ICSE Workshop on De-
scribing Software Architecture with UML, 2001.

[3] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda,
E. Osawa, and H. Matsubara. RoboCup: A chal-
lenge problem for AI. AI Magazine, 18(1):87–101,
1997.

[4] E. Messina, C. Dabrowski, H. Huang, and J. Horst.
Representation of the rcs reference model architec-
ture using an architectural description language.
In Lecture Notes in Computer Science EURO-
CAST 99, volume 1798 of Lecture Notes in Com-
puter Science. Springer Verlag, 1999.

[5] K. Murphy, M. Abrams, S. Balakirsky, T. Chang,
A. Lacaze, and S. Legowik. Intelligent con-
trol for off-road driving. In First International
NAISO Congress on Autonomous Intelligent Sys-
tems, 2002.

[6] W. P. Shackleford, F. M. Proctor, and J. L.
Michaloski. The neutral message language: A
model and method for message passing in hetero-
geneous environments. In Proceedings of the 2000
World Automation Conference, June 2000.

[7] C. M. Shoemaker and J. A. Borenstein. Overview
of the demo III UGV program. In Proc. Of the
SPIE Robotic and Semi-Robotic Ground Vehicle
Technology, volume 3366, pages 202–211, 1998.

[8] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cre-
mers, F. Dellaert, D. Fox, D. Hahnel, C. Rosen-
berg, N. Roy, J. Schulte, and D. Schulz. MIN-
ERVA: A second-generation museum tour-guide
robot. In Proceedings 1999 IEEE International
Conference on Robotics and Automation, vol-
ume 3, pages 1999–2005, May 1999.


